$\frac{\text { WJEC }}{\text { CBAC }}$

GCE MARKING SCHEME

CHEMISTRY AS/Advanced

JANUARY 2014

CH2

Section A

Q. $1 \quad \mathrm{C}$
Q. 2 (a) $\mathrm{Cl}^{\text {º }}-\mathrm{F}^{\delta-}$

Electronegativity decreases down the group / fluorine is more electronegative (than chlorine) / chlorine is less electronegative (than fluorine)
(b)

Q. 3 It has a full / stable (outer) electron shell
Q. 4 (a) $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{Br}_{2}$
(b) Elimination
Q. 5 Temperature 200-300 (accept 470-570K)

Pressure 60-70 (accept 6000-7000 kPa)
Q. 6 Hex-2-ene (ignore references to cis/trans/ E / Z)
Q. 7 (a) A process of bond breaking where the two electrons (of the covalent bond) go to one of the two atoms in the bond
(b) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}^{+}$and $\mathrm{Cl}^{-} \quad\left(\right.$ accept $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}^{-}$and $\left.\mathrm{Cl}^{+}\right)$

Section B

Q. 8 (a) $\quad \ln \mathrm{SO}_{2}$ the oxidation number of sulfur is +4

In $\mathrm{SO}_{2} \mathrm{~F}_{2}$ the oxidation number of sulfur is +6 (1)
Increase in (positive) oxidation number is oxidation (1)
(b) The electrons in the bonds between sulfur and fluorine and sulfur and oxygen take up the position of minimum repulsion / maximum separation [1]
(c) (i) A lone pair donor / a species that seeks out a relatively positive site
(ii) \quad eg $\mathrm{H}_{2} \mathrm{O} / \mathrm{OH}^{-} / \mathrm{Cl}^{-}$(or other halogen) $/ \mathrm{CN}^{-} /$ correct formula of an amine
(iii) A shift of two electrons
(d) $\mathrm{SO}_{2} \mathrm{~F}_{2}+2 \mathrm{Ca}(\mathrm{OH})_{2} \rightarrow \mathrm{CaSO}_{4}+\mathrm{CaF}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
[(1) for correct formulae, (1) for balancing if formulae correct]
(e) (i) UV radiation (1) is able to break the $\mathrm{C}-\mathrm{Cl}$ and $\mathrm{C}-\mathrm{Br}$ bonds (1) giving radicals (1) that attack / breakdown the ozone layer
(ii) The S—F bond in sulfuryl fluoride is too strong to be broken by UV radiation
Q. 9 (a) (i) $165 \pm 5^{\circ} \mathrm{C}$
(ii) As the number of carbon atoms in the acids increase the boiling temperature increases (1)
This is due to an increase in induced dipole-induced dipole /
Van der Waals forces (1) between molecules (1)
(iii) As the molecules increase in size the relative importance of the - COOH group decreases (1)

There is therefore less of a tendency to hydrogen bond with water (becoming less soluble) (1)
(b) (i) Acidified (potassium) dichromate (accept $\mathrm{H}^{+}, \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$) / Acidified (potassium) manganate(VII) (accept $\mathrm{H}^{+}, \mathrm{MnO}_{4}{ }^{-}$)
(ii)

(iii) I 0.050

II 0.025
III $\quad 0.025 \times 186=4.65(\mathrm{~g})$
(iv) Any 2 of the following:

[2]
(c) (i) $\frac{49.3}{12}=4.11 \quad \frac{43.8}{16}=2.74$ (1) Ratio of $\mathrm{C}: \mathrm{O}$ is $3: 2$ (1)
(ii) There are four oxygen atoms per molecule $\therefore 6$ carbon atoms (and 4 oxygen atoms)
$\therefore \mathrm{n}=6-2$ in the acid groups $\therefore \mathrm{n}=4$

> Q. 10 (a) (i) Number of moles of $\mathrm{HCl}=\frac{80 \times 0.20}{1000}=0.016$ (1) Number of moles of calcium needed $=0.008$ (1) Number of moles of calcium actually used $=\frac{0.40}{40}=\sim 0.010$
(\therefore calcium is present in excess)
[Calculation could be carried out in grams]
(ii) gas bubbles / effervescence / some calcium 'dissolves' / colourless solution produced
(b) Mass of \mathbf{E} in solution at $0^{\circ} \mathrm{C}=0.13 \times 2=0.26 \mathrm{~g}$ (1)
\therefore Quantity precipitated $=1.50-0.26=1.24 \mathrm{~g}$ (1)
(c) (i) Brick red / orange-red
(ii) Cream precipitate (accept off-white precipitate)
(iii) $\mathrm{Ag}^{+}+\mathrm{Br}^{-} \rightarrow \mathrm{AgBr}$
(iv) Red / brown solution
(v) Calcium bromide is an ionic compound (1) and contains Ca^{2+} and Br^{-}ions (1)
Chlorine reacts with the bromide ions in a redox / displacement reaction (1)
Chlorine is a more powerful oxidising agent / has a greater affinity for electrons than bromine (1)
$2 \mathrm{Br}^{-}+\mathrm{Cl}_{2} \rightarrow \mathrm{Br}_{2}+2 \mathrm{Cl}^{-}$(1)

QWC: ensure that text is legible and that spelling, punctuation and grammar are accurate so that the meaning is clear
Q. 11 (a) lodine contains weak van der Waals forces /
bonds between each molecule (1)
Less energy is needed to overcome these weaker forces (1) *
Diamond contains strong covalent bonds between each atom (1)
and more energy is needed to overcome these 'bonds' (1)*

* alternative marks

Neither iodine nor diamond contain free / delocalised electrons to carry the charge (necessary for them to conduct electricity) (1)

QWC: organise information clearly and coherently, using specialist vocabulary when appropriate
(b) K^{+}and I^{-}correctly given (1) and in their correct places on the diagram (1)
(c) An excess / stoichiometric / 0.05 mol (1) of potassium sulfate (aq) is added to the barium chloride solution
Mixture is stirred (1) * and then filtered (1)
Precipitated barium sulfate is then washed with distilled water (1) and dried (1) *

* alternative marks

QWC: Select and use a form and style of writing appropriate to purpose and to complex subject matter
Q. 12 (a) (i) Petroleum is heated/evaporated (1)

Fractions condense at different temperatures / separated into fractions with different boiling temperatures (1)
[2]
(ii) $\mathrm{C}_{5} \mathrm{H}_{12} \quad$ (1)

Branched chain therefore

or

(1)
[2]
(b) (i) It enables more useful compounds to be made from the compound
(ii) $\mathrm{C}_{9} \mathrm{H}_{20} \rightarrow \mathrm{CH}_{4}+\mathrm{C}_{4} \mathrm{H}_{6}+\mathrm{C}_{4} \mathrm{H}_{10}$
(c) (i) UV light
(ii) A step during which a radical reacts and another one is formed
(iii) $\mathrm{Cl} \cdot+\mathrm{CH}_{4} \rightarrow \cdot \mathrm{CH}_{3}+\mathrm{HCl}$
[or $\cdot \mathrm{CH}_{3}+\mathrm{Cl}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{Cl}+\mathrm{Cl} \cdot$]
(d) (i)

(ii) Aqueous sodium hydroxide
(iii) $\mathrm{Pt} / \mathrm{N} / \mathrm{Pd}$
(iv) Compound \mathbf{E} does not contain an $\mathrm{O}-\mathrm{H}$ bond (1)

This is present in Compound \mathbf{D} at a frequency of $2500-3550 \mathrm{~cm}^{-1}$ (1)

